First Ten Angstroms

Surface Science Instruments with Real Vision[®] Product Line

FTA1000 A Class Special Purpose Dispense and Measurement Heads	 compact, modular, self-contained instruments mix-and-match controller, pumps, and heads heads can be located remotely on robotics provide contact angles and/or precision dispense all use small microscopes and cameras to verify dispense precision dispense of high-value picoliter and nanoliter drops jetting of heated polymers and solders top view contact angles for wells and low-angle surfaces classic side view contact angles OEM friendly (incorporate into your system) self-contained microprocessor: no host computer required built-in LCD and keypad supports local VGA, touchscreen, keyboard, mouse browser interface over Ethernet LAN or Internet
FTA1000 B Class Economical Drop Shape Instruments	 expandable, upgradeable instruments contact angle and surface tension measurements user-swappable modules for entire electronics chain plug and play determination of options present excellent for QA and factory floor use some systems can be powered by laptop To design your instrument: choose stage and/or chamber choose camera + microscope + backlight combination choose dispense pump + tip Z control 36 page catalog available to explain all options, or let your distributor or FTA recommend a configuration pre-configured <i>student</i> edition in stock for immediate delivery Vista[®] compatible when Firewire camera chosen can use most FTA200 stages and chambers instrument tilt stage available
FTA1000 C Class General Purpose Laboratory Drop Shape Instruments	 top-or-tne-line general purpose laboratory instrument very wide range of modules available all modules user-installable variety of additional stages and chambers planned for future To design your instrument: 1 choose stage and/or chamber 2 choose camera + microscope + backlight combination 3 choose dispense pump + tip Z control steps 1-3 just like a B frame 4 optionally add an autosampler 5 optionally add a lookdown camera for locating drop on sample 1 and 4 pump options heated syringes possible all the flexibility of the B frame and more designed to be run by automation <i>one-click</i> scripts autosampler can support tip changer fixed mag, detented mag, and autozoom microscope options

DCA-100	 economical force balance tensiometer meets ASTM and DIN measurement standards 	
Contact Angle Tensiometer	 choice of 100µg or 1µg sensitivities 100µg is robust and satisfactory for ring and plate IFT 1µg provides sensitivity for 10µm fiber contact angles advancing/receding contact angles by Wilhelmy immersion calculates surface energies from contact angles 	
	 surface and interfacial tensions: liquid-vapor or liquid-liquid ring or plate methods critical micelle determination temperature probe for liquid density measurement disposable paper plates for liquid-vapor surface tension rod method for liquid-vapor surface tension 	TTTT TTTT TTTTT TTTTTTTTTTTTTTTTTTTTTT
FTA2000	 300mm wafer capable platter can handle smaller wafers can handle rectangular samples that fit within 300mm circle 	
Wafer Analyzer	 can handle rectangular samples that it within soonin circle contact angle and surface tension analysis platter and camera tilt through 90° for receding angle analysis 6 tip, 17 liquid vial, autosampler tip changer option available 	
	□ fully enclosed □ clean room compatible	
	 autofocus, autozoom microscope adjustable lookdown angle 	
	 script programmable for unattended operation macros to automate drop formation and baseline determination host computer interface to coordinate sample loading SECS interface available 	
FTA4000	 piezo-electric jetting for picoliter drops jetted volumes down to 20 picoliters 	
Small Drop Contact Angle Analyzer	 automated touch-off for classical drops dip-and-sip for low volume pump prime 	
	 two camera design: horizontal analytical and lookdown locator zoom microscopes on both axes all optics mount on single surface plate for stability two halogen illuminators adjustable for best image contrast enclosed cabinet for stability X-Y-Z-0 automated specimen stage special analysis software for rapid absorption work 	
Legacy Instruments	The following instruments have been replaced by the FTA1000:	
	If you need one of these units, say to match a setup at another facil- ity, they can be obtained by special order. There will be a lead time and the price will reflect a custom order charge.	

Useful Formulas			
Young's Equation	Laplace Pressure across Curved Surface		
Contact angle of liquid on surface Also, the force balance on a spherical sessile drop	$\Delta P = \gamma_{LV} \left(1/R_1 + 1/R_2 \right)$		
γ_{sv} - γ_{sL} = γ_{Lv} cos θ	$\Delta P = \bot$ pressure differential across interface R ₄ , R ₂ = principal radii of curvature of interface at \bot point		
γ_{sv} = solid vapor IFT (aka <i>surface energy</i> of solid)	for sphere, $R_1 = R_2$ = radius of sphere		
γ_{SL} = solid liquid IFT (IFT = interfacial tension)			
γ_{LV} = inquid vapor iF i (aka surface tension of inquid) θ = contact angle of drop (angle in liquid at three-phase line)			
Spherical Drop Geometry	Laplace-Young Equation		
θ = 2 arctan (2h / d)	IFT of liquid-vapor (γ_{LV}) or liquid-liquid (γ_{LL}) interface		
h = height of drop	$mgh = \Delta P = \gamma_{LV} (1/R_1 + 1/R_2)$		
d = diameter of drop's wetted surface on solid	m = density differential across interface		
θ = contact angle of drop	g = acceleration of gravity		
Earca an Wilhalmy Plata	Force Mass (Moight) Polationship		
$F = L \gamma_{LV} \cos \theta$	F = mg		
F = force on plate	F = force (in Newtons) measured by balance		
L = wetted perimeter length	m = mass (in kilograms) q = acceleration of gravity, nominally 9.8m/s2		
	e.g. 1 gram mass \rightarrow 9.8 milli Newton force		
Basic Statistics	Hook's Law and Dilational Stress		
$\mu = \Sigma \mathbf{x}$, / n	$\tau = G \gamma$		
$\sigma = \sqrt{\{ 1/(n-1) \Sigma(x_i - \mu)^2 \}}$	$\tau(t) = \dot{G}(t) \gamma(t)$		
$COV = \sigma / \mu$	$G' = \tau_0 \cos(\phi) / \gamma_0$		
n = number of items	$G'' = \tau_0 \sin(\phi) / \gamma_0$		
i = index of item (for summations)	$n'' = G' / \omega$		
$x_i - value of i million i million$			
σ = standard deviation of set	τ = stress, or force per unit area $\tau(t) = time varying stress typically \tau sin(\omega t)$		
COV = coefficient of variance	G, G(t) = elastic modulus		
	γ = strain, relative change in length (or shape)		
	γ (t) = time varying strain, typically $\gamma_0 \sin(\omega t + \phi)$		
	G' = in-phase <i>elastic</i> modulus		
	n' = dynamic viscosity		
	η " = dynamic elasticity		
Wetting Tension Characterizes solid surface by RHS of Young's equation:	Zisman's Critical Wetting Tension		
WT = $\gamma_{\rm ex} \cos \theta$	Critical Wetting Tension (CWT) is defined as intersection of IFT- cos θ plot line with cos 0° (IFT on X axis, cos θ on Y). IFT at		
Note this varies from $-\gamma_{LV}$ (at 180°) to $+\gamma_{LV}$ (at 0°)	this point is CWT. Experimentally it is found CWT $\approx \gamma_{sv}$.		
Girifalco-Good-Fowkes-Young Rule	Owens-Wendt Geometric Mean Mean		
Uses the combining rule $\gamma_{\rm SL}$ = ($\sqrt{\gamma}_{\rm SV}$ - $\sqrt{\gamma}_{\rm LV}$)^2	$(1 + \cos \theta) \gamma_{} = 2 \sqrt{(\gamma^{p}_{} \gamma^{p}_{}) + 2 \sqrt{(\gamma^{p}_{} \gamma^{p}_{})}}$		
1 + cos θ = 2 $\sqrt{(\gamma_{SV} / \gamma_{LV})}$ - π / γ_{LV}			
π = spreading pressure (often \approx 0)	D superscript indicates dispersive and P polar component		
Wu's Harmonic Mean Rule	Lewis Acid/Base Rule		
$(1 + \cos \theta) \gamma_{LV} = 4\{\gamma^{D}_{SV}\gamma^{D}_{LV} / (\gamma^{D}_{SV} + \gamma^{D}_{LV}) + \gamma^{P}_{SV}\gamma^{P}_{LV} / (\gamma^{P}_{SV} + \gamma^{P}_{LV})\}$	$(1 + \cos \theta) \gamma_{LV} = 2\sqrt{(\gamma^{D}_{SV} \gamma^{D}_{LV})} + 2\sqrt{(\gamma^{A}_{SV} \gamma^{B}_{LV})} + 2\sqrt{(\gamma^{B}_{SV} \gamma^{A}_{LV})}$		
	A superscript indicates acid and B base component		
First Ten Angstroms, Inc.	First Ten Ångstroms™, NanoDispense™ and		
Portsmouth, VA 23704	of First Ten Angstroms, Inc. Vista® is a registered trademark of		
© 2007. All rights reserved.	Microsoft.		